

Agenda

- Introduction
- > The Danish formula, background and definitions
- > Crack width specifications
- > Controlling TCS crack widths in practice
- "Owners" of cracks
- > Early age cracking the Danish/Nordic way
- > Specifications
- Experience and ideas for development

- > Temperature and strength simulations
- > Assessment
- > Summary and closure

1

Concrete – one big problem: Cracks !

- Throughout my career (from 1986)
 and before cracks has been a cause of discussion in our industry
- > With a simple formula/design rule we can design the minimum needed reinforcement to control the cracks to an agreed level
- > But few know this "big secret" and even fewer use the design rule and obtain the advantages of it

Breakwater in Tangier with controlled cracks

3 9 OCTOBER 2017 CONTROLLING TCS CRACKS

Polished floor in a shop visible cracks – in spite of sectioning!

Definition of TCS cracks

- > TCS actions are movements due to concrete's Shrinkage, <u>Creep and Temperature changes – no external forces</u>
- > Concrete's TCS actions leads to cracks just because the structure has a certain size or because it's movements are restrained

> Concrete's temperature development during early hardening results in the same kind of cracks

Allowable crack widths, DS/EN 1992 FU:2013:

(5) Der bør fastlægges en grænseværdi, w_{max} , for den beregnede revnevidde, w_k , der tager hensyn til konstruktionens foreslåede anvendelse og art samt omkostningerne ved revnebegrænsning.

Tabel 7.1NA – Anbefalede maksimale værdier af beregnede revnevidder w_{max} (mm)

Miljøklasse	Slap armering	Spændarmering	
Ekstra aggressiv	0,2 mm	0,1 mm	
Aggressiv	0,3 mm	0,2 mm	
	0.4	0.2 mm	
Moderat	0,4 mm	0,3 mm	
Moderat vis der ikke stilles særlige kra / _{max} -værdierne anført i tabel 7 ende for armerede betonkonsti	v (fx vandtæthed), kan det antages, a 1NA under kvasipermanent lastkomb ruktionsdele i bygninger med hensyn f	t en begrænsning af revnevidden til ination generelt vil være tilfredsstil- til udseende og holdbarhed.	 -

Controlling crack widths to obtain self healing according to DS/EN 1992-3:2009

TABLE 7.105 – CLASSIFICATION OF TIGHTNESS

TIGHTNESS CLASS	REQUIREMENTS FOR LEAKAGE		
0	Some degree of leakage acceptable, or leakage of liquids irrelevant		
1	Leakage to be limited to a small amount. Some surface staining or damp patches acceptable		
2	Leakage to be minimal. Appearance not to be impaired by staining		
3	No leakage permitted		
12 9 OCTOBER 2017 CONTROLLING TCS CRACKS	COWI		

Reinforcement for crack control in simple shaped industrial floors – be aware of box outs

> $f_{ck} = 30$ MPa	LAYER THICKNESS MM	NUMBER OF MESHES	REBAR DIAMETER MM	MAXIMUM DISTANCE MM
	60	1	6	60
> Cover towards top face (and better side if the second	80	1	8	80
bottom side if two mesnes) = 25 ± 5 mm	100	1	8	90
	120	2	8	90
> Anchoring factor ≥ 0.6	150	2	8	90
> Do not exceed 140-150	180	2	8	90
mm spacing due to	200	2	8	90
workers safety when walking on the meshes	250	2	10	115
	300	2	10	100
	400	2	14	125
	500	2	16	120

Specified crack widths for swimming pools without membranes

	Exposure Structural member, concrete	Face towards Basin water, XD2	Face towards soil XC2	Face towards Service aisle XD1/XC2	
	Basin/tank walls E40	0.1 mm (0.2 mm)	-	0.2 mm (0.3 mm)	
	Bottom slabs E40	0.1 mm (0.2 mm)	0.2 mm (0.4 mm)	-	
	Promenade decks, E40	0.2 mm (0.2 mm)	-	0.3 mm (0.3 mm)	
	Slabs on soil, M30	-	0.3 mm (0.4 mm)	0.3 mm (0.4 mm)	
	Outer walls of basement, M30	-	0.3 mm (0.4 mm)	0.4 mm (0.4 mm)	
22	9 OCTOBER 2017 CONTROLLING TCS CRACKS Numbers in the structur	brackets are the al members acco	e requirements for ording to DK-NA/E	r crack widths in N 1992	COWI

- > White concrete with organic shapes and holes for trees etc.
 > Alternating surface texture
 > Owner's concerns about dirt in joints
- > Fire escape route carry trucks

 Dydre
 Kravet til den ydre temperaturforskel, Dydre, vedrører den maksimale forskel der må optræde i to sammenstøbte konstruktionsdeles respektive middeltemperaturer. Kravet stilles til konstruktionsdele, der støbes til forskellige tidspunkter. Hvis der optræder væsentlige forskelle i godstykkelse inden for

 32
 9 OCTOBER 2017 CONTROLLING TCS CRACKS

Early age thermal cracking – right and wrong texts:

DS/EN 13670:2010 – Anneks F (informativt):

(4) Overfladetemperaturen i støbeskel bør ikke være over 0 °C på støbetidspunktet.

What?

EN 13670:2009 (E) – Annex F (informative), F.8.2:

(4) The surface temperature at the construction joint should be above 0 °C at the time of concreting.

Luckily it was only a matter of wrong translation Therefore: Read multilingual standards carefully – and refer to the original COWI

Early age thermal cracking – now the requirement only exists in the special specifications (Concrete Bridge - SWS-P) "Vejregler":

Early age thermal cracking – now the requirement only exists in the special specifications (Concrete Bridge - SWS-P) "Vejregler":

...continued...

The Contractor's documentation for ensuring compliance with the hardening requirements shall be available in the form of calculations of expected temperature and tension conditions.

35 9 OCTOBER 2017 CONTROLLING TCS CRACKS

- > If $\Delta_{mean, max}$ is **NOT EXCEEDED**, cracks passing through the structural member will most likely not form at an early stage.
- > A sufficient reinforcement to control cracks due to shrinkage is still needed and must be able to distribute the cracking even at a late stage.
- The concrete strength is fully developed at this time, and therefore the reinforcement shall correspond to the design strength, f_{ck}.

The concrete strength is not fully developed at this time, and therefore the reinforcement is strong compared to the concrete's tensile capacity

> The TCS design crack width was 0.15 mm
 > The observed crack widths were in correspondence with the design crack widths (0.10 mm- 0.15 mm- 0.20 mm)
 > The ended because the weaks

> The crack passed through the walls

11 1058

Is temperature control always needed?

- > Sufficient reinforcement is needed to control for late cracking due to TCS
- The maximum crack width is the same
 but it appears at an early stage
- > The crack development is independent of the stress/strain

41 9 OCTOBER, 2017 CONTROLLING TCS CRACKS COWI

Questions What is the strength of concrete when early age cracks appear? Does the reinforcement work at this stage?

How can this be tested? PRACTICE and LAB Will such a design rule be cost-effective for society? MOST LIKELY

THANKS FOR YOUR ATTENTION!

51 9 OCTOBER 2017 CONTROLLING TCS CRACKS