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Concrete structures, Plasticity theory

The theory of plasticity has been used in Denmark for more than 100 years for calculating the load bearing
capacity of concrete structures.

Rules for using the theory of plasticity have been connected to simple structures where hand calculations
have been used.
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Concrete structures, Plasticity theory

Use of theory of plasticity, and A Q
thus use of redistribution of

forces and stresses in a concrete
structure, require the materials to

behave in a ductile manner.
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Concrete structures, Plasticity theory
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Real stress-strain curves and ideal plastic models used
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Concrete structures, Plasticity theory

Rules in codes, In general

The codes for concrete structures contain

basic rules to secure ductility of reinforced
concrete structures:

e Ductility of materials (as an example Class
B and Class C)

e Detailing rules for structural members, as
an example securing confinement (see as
an example chapter 9 in DS/EN 1992-1-1)

Minimum
reinforcement

*  Minimum reinforcement preventing

brittle tensile failures.
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Concrete structures, Plasticity theory

Rules in codes, In general

The determination of internal forces may be based on the theory of plasticity using the generally
acknowledged approximations.

Adoption of the theory of plasticity presupposes that the structure has adequate ductility, i.e.
yielding in the reinforcement will develop to a sufficient extent before other failure modes such as
instability intervene in a progressing, ductile failure. When applying the theory of plasticity,
verification of sufficient yield capacity can be omitted if the following conditions are fulfilled.
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Concrete structures, Plasticity theory

Rules in codes, In general

The distribution of internal forces does not deviate strongly from that corresponding to the theory
of elasticity. An accurate calculation of the distribution of internal forces corresponding to the
theory of elasticity is not required. It will normally be adequate to apply a qualified estimate or
simple approximation methods.

For lower-bound solutions, the following principle may be used: Where the reinforcement area
associated with plastic design at any point of the structure is denoted A, and the reinforcement
area associated with the elastic solution at the same point of the structure is denoted A, the
above may be assumed to be fulfilled if 1/3 A . <A, <3 A_ for all points of the structure. The
elastic solution may be assumed to correspond to the plastic solution where the overall design
reinforcement for the structure is a minimum.
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Concrete structures, Plasticity theory

Rules in codes, Continuous beams and slabs

Restraining moments are chosen between the
values found by the theory of elasticity and
one third thereof. For continuous beams and
slabs of approximately equal spans and
uniformly distributed loads, verification of the
position of the restraining moments in relation
to the theory of elasticity may be omitted if at
restraints and intermediate supports
reinforcement is applied for restraining
moments which are taken numerically as not
less than 1/3 and not more than twice the
maximum design moments in adjacent spans.
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Concrete structures, Plasticity theory
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. The solution does not take . The solution

account of reinforcement layout and results in a homogeneous mesh
cracked section. Solution requires reinforcement giving a simple
reinforcement for highest tension stresses. and suitable layout of the
Reinforcement reduction demands reinforcement. Reinforcement is
complicated curtailment of the used optimally by internal
reinforcement. redistribution.
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Concrete structures, Plasticity theory

Use of nhumerical calculation methods

The load bearing capacity is calculated according
to the theory of plasticity.

How do we check that the calculated load
bearing capacity for the structure shown in the
figure is correct, i.e. does the structure have the
necessary ductility?
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Concrete structures, Plasticity theory

New Eurocode for concrete, Effectiveness factor, orthogonal reinforcement, plain stress field

v=n,1.
30 1/3

n, =|— | <1; f.in MPa Effect of f_(brittleness of concrete)

Se f c c

c y A TGEdy
TEdxy]
7, = 1 <1,0 Effect of transverse stress/strain )4
k, + ky& | 4 V4
I /,/ N [TEdxyl
«— — = >
where: | —<4 /5< Ocax
. . Gctf\/‘
* k, and k, are constants to be calibrated with tests. If no better py/ 7
information are available, k; =1 and k, = 100 may be used. — 7

* g, is the principal strain transverse to the direction of the compression
field and determined by accounting for strain compatibility in the
member, which is assumed fully cracked.
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Concrete structures, Plasticity theory

H . . >1 /
General check of ductility Point in structure I8 g
'
For all points in a concrete construction, the following conditions must be met: I
l).f)m%
o, <Vfy
The value of v depends on the load level - transverse strain -, therefore vf_, reflects the real load bearing
capacity of the concrete at the current point for the current load.
|
o, /F v : €ud
ES S Eud |
f / \I'\
t / 1/
! L/ f
where g, is the design limit strain in the reinforcement. f / MY yd
/I '/
Aj(=Ay &’
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Fulfilment of the specified requirements ensures the ductility of the reinforced concrete structure.
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Concrete structures, Stability

What is the stability capacity of a complex wall structure of cracked
reinforced concrete, with holes, cross walls etc.?

How do we calculate the stability capacity of the 7 .
tability e LV 4 Yo % 4 4 1 VTV 1y
concrete structure shown in the figure? " . "%
Today, simplified principles are used with the =
insertion of simple columns in the wall structure. }
This is conservative as it does not take into ) NNy
account: % 75m-
* Support by transverse walls
» stiffness between holes A
* importance of the reinforcement lay-out in E
the wall : NE N
and what about fire? _ m
74 ;ﬁy /“ Q =
3.6m X 8.6 m N
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Concrete structures, Numerical modelling

Agenda
[ng
* Model principles Rences Concet ek S tre
e ® o umerical Limit State Ana VSIS

 Plasticity & ductility Daniel Vestergaard
* Stability
* Fire

* Examples

* Concluding remarks

PhD Thesis
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Concrete structures, Numerical modelling principles

Direct approach

* Traditional approach:

\
e Equilibrium (stresses €= loads)

« Compatibility  (strains <> displacements) [ Kwu=r
* Constitutive law (stresses €= strains) )

* Complicated except for linear elasticity
* Reinforced concrete cracks and yields
* Requires incremental load-stepping
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Concrete structures, Numerical modelling principles

Indirect approach: Principle of minimum complementary energy

* Replace explicit compatibility condition with minimum principle:

Equilibrium . Compatibility
fi —ee » | (displacement
( orce) complementary energy ( place )
stress strain

* Nonlinear elasticity (positive stiffness)
* OK for cracked response to static load cases

* No need for explicit stress-strain relation
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Concrete structures, Numerical modelling principles

Minimizing complementary energy using convex optimization

Rigid-plastic analysis Nonlinear-elastic analysis
maximize Load bearing capacity ( load factor) minimize Complementary energy
given Equilibrium given Equilibrium
|L> Stress field and collapse mechanism |L(> Stress field and deformations
L e L uis sLs
- Viateriattatiure - Material failure - Displacements
- Instability - Crack widths

- Fire, incl. instability

 Efficient and robust algorithms
* Low modelling complexity

e Path-independent solution



Concrete structures, Numerical modelling principles

Constitutive model

* Reinforced concrete (stress + energy) = Reinforcement + Concrete

e Material stress-strain curves

Actual curves

fy+ fi -

o

\j

fy

A Es

Model curves

m'
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Concrete structures, Numerical modelling principles

Effectiveness factor

* Plastic concrete strength:

ﬁ:p =v(e)fe v(e) = nfcne(gl)

* Model implementation:
& = Exx(Ogy) + gyy(o-sy) — (o)
A j;p(gl)

(El,i—lafcp,z'—l)

(Sl,ia fcp,i)

feq

Brittleness factor 1,

1.2

0.8t
§ 0.6
0.4

0.2¢

0

12 16 20 25 30 35 40 45
f [MPa]
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Concrete structures, Numerical modelling principles

Finite element model

* Elements ensuring section force equilibrium

e Section model
 Stress, strain, and v-factor in all points

'.zs’l
«‘.
L4 {TI’ILIH T?:yy. TIIy} , ,"
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Concrete structures, Deep beam example

Example: Deep beam with openings

F = 200 GPa for
S 10.84 GPa for
EEEEEEEEEEL . _[33GPa for
pr = 02% IE py, = 02% Taf3 | | ¢~ 10.013 GPa for
| 2a/3
:q:_ ‘ ™ ‘2_00mm
L s )
pe = 0.6%t\p, = 0.6% | 2a/3 Iy 4 —
v Pz = 3%~ p, = 0.2% :a/S | | H
QR T S R A P I E,
“ NRG,/Q\‘N e o = a = a ““a/2* 600 mm >
+ - fy
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Concrete structures, Deep beam example

Effect of v-factor

e Constant vs. Variable v-factor
 Actual concrete strength = Ductility is ensured

v = 0.55

(same value in all points)
(min. value for shear)
2000

1500

1000 -

y [mm]
=
o

-1000 : : ‘ : : : !
500 0 500 1000 1500 2000 2500 3000

v =v(e)
(varies between points)
2000
1500
1000

500 -

y [mum]

-1000 ‘ ' ' ' ' : :
5000 0 500 1000 1500 2000 2500 3000
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Concrete structures, Deep beam example

Effect of v-factor

* Fields for p = 400 kN/m

Ocll v
(compressive stress) (effectiveness factor)

v 4 ’ ﬁ e
(St

ﬁ R
* 0 is reduced due tov

|

)/""‘

e v is reduced due to strain
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Concrete structures, Deep beam example

Reinforcement strain

* Reinforcement strain must not exceed ultimate strain

max(Exyx, Eyy)
(reinforcement strain)

E
QESSLk

|4

uk __ 0.05
y 1.0
(exceeding ultimate strain)

max(exx, eyy) > =

500

400 hl_], ------------------
= 300]
=
%
— 200+
2y

100} v =055 |

v =vlzr)
0
0 50 100

Uy [MIN]

Due to singularity

[ Not due to singularity
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Concrete structures, Numerical modelling principles , I
Instability analysis 4_,
—EEREE
* Classical buckling problem: Scale P, until stiffness vanishes - =
* Linear elasticity: Pre-buckling stiffness is constant "

* Nonlinear elasticity: Stiffness depends on deformations

* Approach:
* Get pre-buckling response to P,
* Use cracked stiffness to estimate P,

P P i
‘ , ; PCI' A ; PCI' ?+1
v o

0O T /‘
7 1 e \
Fo 1/ L /; |
| L

1 - 1 - .
U i1 U
i ug Uy
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Concrete structures, Stairwell example

Example: Stairwell with openings

* Material parameters: (prEN-1992-1-2:2021)

* Concrete: C30

 Reinforcement: Y500

* Dimensions:

h=16m b; =090 m

b =8.60m h; =2.10m

d =3.60m c =0.75m
e Load:

py = 112.5kN/m

pP,0 = 300 kN/m
p, = 100kN/m

t =100 mm
Psx = 0.0105
Psy = 0.0105
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Concrete structures, Stairwell example

Example: Stairwell with openings

e Evolution of critical load factor

* When A = A, model is exact
2> A, = 0.84

1.2

l r ® ° ° ) ® [ ]

0 0.2 0.4 0.6 0.8 1 1.2

0.75

0.5

0.25

(a) Initial load step

Itfc
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 Evolution of buckling mode
* Lower stiffness in compressive struts

0.75

0.5

0.25

(b) Final load step

Itfc




Concrete structures, Numerical modelling principles

Fire-induced effects

* prEN-1992-1-2:2021.:
e Standard fire resistance

—>Temperature profile

—>Reduced material strength & stiffness + Thermal strains
* Stress-strain curves

Concrete Reinforcement

—20°C  ——400°C —— 800°C —20°C  ——400°C —— 800°C
—200°C —— 600°C —— 1000°C —200°C —— 600°C ——1000°C

os/ fy .20

E/ESY,20
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Concrete structures, Stairwell example

Example: Stairwell with openings

e Load: py = 67.5kKN/m (112.5KkN/m)
' P,0=90KkN/m (300 kN/m)
p, =60KkN/m (100 kN/m)
Thermal deformation Evolution of critical buckling load
(30 min. fire, no load) (Aer = 0.96)
e 1.2 . : : . .
1 . |
0.75 0.8} . R ° -
< 05 K 506
0.25 04
0.2
0
—tf. 0

Evolution of critical buckling mode

tfe
I 1

0.75 0.75

0.25 0.25

—tfe

(a) Initial load step (b) Final load step

e Lower buckling load + different buckling mode

Daniel Vestergaard DTU/Rambgll og Bent Feddersen Rambgl|



Concrete structures, Concluding remarks

Why can’t we just use existing tools?

* High modelling complexity
* Detailed reinforcement layout
* Fracture energy (uncertain and difficult to determine)
e Example: DIANA model = 1 month modelling vs. 1 day

* High computational cost and low robustness

* Loading history vs. path dependence
* Detailed response to applied loads
 What about cracks from previous loading history?
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Concrete structures, Concluding remarks

Outlook

* When do we need to take v(g|) into account?

 When do we face ductility issues?
* Singularities vs. actual issues

* Tension stiffening
* Post-tensioning
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